
Week 5 - Friday

 What did we talk about last time?
 Shared memory
 Semaphores

 Using a semaphore can be frustrating if you wanted to do other
stuff and get blocked

 Instead of calling sem_wait(), there are two alternatives:

 Tries to decrement the semaphore but gives an error code if it would block

 Waits on the semaphore but waits only for the amount of time specified in
the struct timespec

int sem_trywait (sem_t *sem);

int sem_timedwait (sem_t *sem, struct timespec *time);

 In order to avoid worrying about names, it's also possible to
create unnamed semaphores, using the following functions:

 Create an unnamed semaphore
 pshared is 0 if used only by threads of the same process and non-

zero is shared by different processes

 Delete an unnamed semaphore

int sem_init (sem_t *sem, int pshared, unsigned int value);

int sem_destroy (sem_t *sem);

 The macOS implementation of POSIX includes unnamed
semaphores, but they don't do anything

 Unnamed semaphores only work if they're in shared memory
 You can use them in memory-mapped files or other shared memory
 They're mostly used for synchronization for threads, which

necessarily share memory
 They won't work for parent and child processes (unless they set up

shared memory like other processes)

 Exam is in class on Monday
 Mostly short answer questions
 A couple of debugging questions
 A couple of programming questions

 cat
 cd
 chmod
 cp
 grep

 kill
 less
 ls
 make
 man

 mkdir
 mv
 ps
 pwd

 Although it's a bit ugly, C99 specifies types with fixed sizes
 To use them, #include <stdint.h>
 Then, you're guaranteed the following:
 int8_t 1 byte (8 bits), signed
 int16_t 2 bytes (16 bits), signed
 int32_t 4 bytes (32 bits), signed
 uint8_t 1 byte (8 bits), unsigned
 uint16_t 2 bytes (16 bits), unsigned
 uint32_t 4 bytes (32 bits), unsigned

 And you probably get int64_t and uint64_t as well

 If you want to print an int, you use %d
 If you want to print an int32_t, what do you do?
 There are some (ugly) macros used:
 PRId8
 PRId16
 PRId32
 PRId64

 You can use these macros for octal or hex by changing d to o
or x, e.g. PRIx32

 To use these macros, #include <inttypes.h>
 Note that inttypes.h includes stdint.h, so you can kill two birds with one

stone
 These macros are special strings
 There's an obscure rule in C that treats consecutive strings literals like a

single string literal:
 "goats" "boats" "moats" is the same to the compiler as
"goatsboatsmoats"

 To use a macro, it has to "float" in between the rest of a formatting string

int a = 7;
int32_t b = 7;
printf ("Value: %d\n", a); // int version
printf ("Value: %" PRId32 "\n", b); // int32_t version

 Space/time tradeoff
 Sometimes using more resources can allow faster execution
 Example: Buffer sizes in communication
 Example: Hash tables from data structures

 Interface abstraction
 Treating different things through a common abstraction makes a system simpler

▪ But it also prevents optimization
 Example: Linux treats networking, files, and many memory accesses like reading

and writing to files
 Security vs. usability
 Greater security always entails less usability
 Different products need the balance at different levels

 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P)
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid

 This book considers client/server architectures
from the perspective of a many clients
connecting to a single server
 If you recall, the Software Engineering book

describes client/server as a system with many
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way:

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and
understand the response

Server

Client 1

Client 2

Client 3Client 4

Client 5

http://www.goats.net/image.jpg

ADVANTAGES

 Updates are simple, because only the
server needs to be updated

 Only the server needs to be checked
for security problems or data
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated

 If more and more servers are used, the architecture
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult

Node 1

Node 2

Node 3Node 4

Node 5

 Layered architectures divide systems into a strict
hierarchy of components

 Each layer can only communicate with the layer
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking

directly to one much lower or higher
 Some services at each layer are redundant

Persistence Layer

Services Layer

Business Layer

Presentation Layer

 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt

 Event-driven architectures react to events, changes in the state
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared
resources

Event
Generator

Event
Channel

Event
Processing

Event
Handler 1

Event
Handler 2

Event
Handler 3

 We talk about the previous architectures because they're models that
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system is mostly one architecture, but it breaks a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the

generic operation down to the requirements of particular hardware

 As discussed in COMP 3100, UML
standardizes state models as a way
to visualize states and transitions
 States are shown as rounded rectangles
 A solid circle shows the initial state
 A solid circle in a circle shows the final

state
 Transitions are shown as labeled arrows
 Effects (if any) are written after a slash

after the transition label

 State machines are often
used to recognize strings as
being legal or illegal

 Consider a state machine
from Project 1 designed to
recognize integer values
(formatted in either decimal
or octal)

 In addition to recognizing
integers as legal or illegal,
the machine builds the
integer based on the effects

 There are algorithms to convert between regular expressions and
state machines

 Most regular expression libraries build a state machine as a way to
see if strings match the regular expression

 One way to implement state machines is with a 2D array
 One row for every state
 One column for every event, saying which state a given state will

transition to
 If there are effects, a second 2D array can show which effects

happen on those transitions
 If an action happens whenever a state is entered, a 1D array can

hold that information

 The state model on the left has a transition table on the right

Events

States Connect Suspend Ready Finish Cancel

Connecting Buffering

Buffering Playing Closing

Playing Buffering Closing

Closing

 Two enums are used to list the states and the events
 A 2D array stores the transitions

typedef enum { CONN, BUFF, PLAY, CLOS, NST } ms_t;
typedef enum { Connect, Suspend, Ready, Finish, Cancel } event_t;
#define NUM_STATES (NST+1)
#define NUM_EVENTS (Cancel+1)
static ms_t const _transition[NUM_STATES][NUM_EVENTS] =
{

// Connect Suspend Ready Finish Cancel
{ BUFF, NST, NST, NST, NST }, // Connecting
{ NST, NST, PLAY, NST, CLOS }, // Buffering
{ NST, BUFF, NST, CLOS, NST }, // Playing
{ NST, NST, NST, NST, NST } // Closing

};

 A table filled with function pointers can be used for effects

static action_t const _effect[NUM_STATES][NUM_EVENTS] = {
// Connect Suspend Ready Finish Cancel
{ start_load, NULL, NULL, NULL, NULL }, // Connecting
{ NULL, NULL, resume, NULL, NULL }, // Buffering
{ NULL, pause_play, NULL, NULL, NULL }, // Playing
{ NULL, NULL, NULL, NULL, NULL } // Closing

};

 State models don't have any timing or
sequence information

 Sequence models show the order in which
messages are sent from one entity to
another
 Solid arrows show synchronous messages
 Open arrows show asynchronous messages
 Dotted lines show responses
 Messages that end in circles are lost

 The order of messages in sequence models
is logical, not scaled by time

 A program is an implementation of an algorithm in a
programming language
 A list of instructions for the computer

 A process is program being executed
 Usually, processes are different programs
 But it's not unusual to have several processes running at the same

time that are the same program
 Running a program creates a new process

 Every process has its own virtual memory
 Addresses from 0 up to 232 or 264 bytes

 Each instance of virtual memory is organized into segments
 Code
 Data
 Heap
 Stack
 Kernel

 Each segment has certain kinds of operations allowed on it
 Do illegal operations, and you get a segmentation fault
 As functions get called, the stack grows downward
 Call too many functions, and you'll get a stack overflow when it

gets too big
 Depending on the system, the heap can grow too
 malloc() returns NULL when you run out of heap space

High Memory

Kernel OS memory

Stack
Local variables,
return addresses

Heap
Dynamically
allocated data

Low Memory

Data Global variables

Code
Program
instructions

 Addresses in one process have nothing to do with addresses in
another

 The OS maps the virtual addresses to physical addresses
 Transparently!
 Each process has no idea what the location of, for example, its virtual

address 0x0432A8F8 is in physical memory
 Benefits:
 Security: One process cannot (normally) interfere with the memory inside

another process
 Bookkeeping: The OS only gives each process what it needs and can

temporarily store parts of a process's memory on disk to make more space

 OS sometimes means the entire operating system, including
utilities, window managers, and lots of other stuff

 Sometimes OS means just the kernel
 The kernel is the part of the OS that does deep stuff:
 Scheduling processes
 Accessing devices
 Managing memory

 Some operations can only be done in kernel mode, the mode
that the kernel runs in

 Normal programs run in user mode

 One approach to batch processing is running Process A until it's done, then
Process B, then Process C

 The problem is that programs do I/O
 I/O is slow
 The CPU isn't in use while waiting for I/O

 Consider the following example:
 Green is computation
 Orange is I/O

 Nothing is getting done during I/O!

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
ro

ce
ss A

B

C

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ro

ce
ss A

B

C

 With true multiprogramming, you have more than one process
loaded into memory

 Then, when one process is waiting on I/O, we can start running
another

 Using multiprogramming, we could run Processes A, B, and C as
follows:

 Doing so gives us a CPU utilization of 15/16 = 93.75% and only 16
time units to finish the work

 Preemptive multitasking:
 Processes get a maximum amount of time to run called a quantum
 If the process starts doing I/O, the OS switches to another process
 Otherwise, the OS switches when the process runs out of time
 There's research about the ideal length of a quantum

 Cooperative multitasking:
 Processes run until they do some I/O or voluntarily give up control

 Cooperative is good because it's simple and can have lower
overhead

 Unfortunately, the problem of processes that don't give up control
means that most modern systems use preemptive multitasking

 A context switch happens when the running process changes
 The virtual memory of one process changes to another
 The kernel memory stays the same

 The scheduler in the OS decided which process runs next

 Because memory has to get saved and restored, cache is invalidated, and
there's a switch from user mode to kernel mode and back, context
switches have overhead that slows things down

Kernel Mode User ModeUser Mode

Process executes
syscall to

switch to kernel
mode

Save register
values into

Process A's data
block

Change to
Process B's

virtual memory

Restore register
values from

Process B's data
block

Kernel executes
sysret,

returning to user
mode

Process B
resumes

executing

 The kernel runs with full access privileges to everything
 The kernel controls:
 Physical memory
 File system
 I/O devices

 It handles power disruption and people attaching USB devices
 Jobs of the kernel
 Resource manager: Giving access to hardware when needed
 Control program: Handling errors and access violations

 Because it has to work consistently, the kernel doesn't change
much over the years

 The current privilege level (CPL) is a 2-bit value set in x86 CPUs
 Also called a ring
 Ring 3 is user mode
 Ring 0 is kernel mode
 The other two rings aren't used (except perhaps for weird virtualization

stuff)
 When in kernel mode:
 All memory addresses can be accessed
 Some special CPU instructions like halting the CPU or invalidating the

cache can be executed
 Some normal CPU instructions work differently

 The kernel is loaded during the boot sequence
 CPU executes firmware stored in non-volatile storage
 Older BIOS system
 Or newer UEFI system

 Firmware finds a boot loader, linked to by a special part of a hard drive or SSD
or similar
 GRUB is a common Linux bootloader
 BOOTMGR is for Windows
 BootX is macOS
 Some boot loaders allow dual-booting, the ability to choose which OS to start

 The boot loader finds the file with the kernel in it and calls its main() function
 The kernel takes over and does everything else

 The kernel can be invoked in two different ways
 System call:
 A user mode program wants to do something (like open a file) that requires OS

involvement
 Somewhere in the library, a special trap instruction will ask the kernel to do

something
 Interrupt or exception:
 Interrupts are hardware events that cause the kernel to react, like clicking a

mouse
 Exceptions are software events that notify the kernel of a problem, like a

segmentation fault
 This kind of exception isn't the same as an exception in Java, although the Java

exception can be triggered by an OS exception

 User-mode processes can do normal CPU operations
 Add, subtract, multiply, divide
 Test for equality

 They can't do anything outside the CPU on their own
 Read or write hard drive data
 Send messages over the network

 To do these things, processes make system calls, asking the
kernel to do the operation

 In assembly, a special trap instruction triggers a mode switch so
that the kernel will start doing stuff
 The x86 trap instruction is syscall

 The kernel checks to make sure that the process has all the
necessary privileges to do the operation first

 After the system call, the kernel runs the sysret instruction,
returning to user mode

 Many system calls are referred to by the C functions that are
called to run them, even though those functions just do set up
before running the real system call
 For example: write()

 The 64-bit Linux kernel has more than 300 system calls
 These are just a few common ones:

System Call Number Purpose
read 0 Read from a file descriptor
write 1 Write to a file descriptor

nanosleep 35 High-resolution sleep (units in seconds and nanoseconds)
exit 60 Terminate the current process
kill 62 Send a signal to a process
uname 63 Get information about the current kernel

gettimeofday 96 Get the system time in seconds since midnight, January 1, 1970
sysinfo 99 Get information about memory usage and CPU load average
ptrace 101 Trace another process's execution

 Processes are, of course, created when you run a program from
the command line

 However, you can also create processes from within a program,
using calls to special functions

 The fork() function creates a new processes that's exactly the
same as the current process

 The exec() function allows you to replace the current process
with another program

 Each process has a unique ID, its process ID or PID
 getpid() returns the PID of the current process
 getppid() returns the PID of the current process's parent process

 The fork() function is pretty crazy!
 When you call it, the process you're inside of keeps running
 And another process spawns at exactly the same point in code
 Both processes have exactly the same memory layout
 The only difference is that fork() returns the child PID for the original process and 0 if

you're the process that just got forked

pid_t child_pid = fork ();

if (child_pid < 0)
printf ("ERROR: No child process created\n");

else if (child_pid == 0)
printf ("Hi, I'm the child!\n");

else
printf ("Parent just gave birth to child %d\n", child_pid);

 If you call fork() in a loop, you will quickly create too many
processes and slow/crash your computer

 Each fork() creates a new process, but the old process keeps
running

 The following code will have four prints:

pid_t first_fork = fork ();

// Original parent and child create new processes
pid_t second_fork = fork ();

// This line prints four times
printf ("Hello from %d!\n", getpid ());

 Sometimes it's useful to fork a clone of yourself
 Other times, you want to run another program
 In those situations, you first fork yourself and then have your

child call something from the exec() family of functions:
Function Description

execl(char *path, char *arg0, ..., NULL) Executes the program with the given path

execle(char *path, char *arg0, ..., NULL, char* envp[]) Executes the program with the given path and environment
variables

execlp(char *file, char *arg0, ..., NULL) Executes the program by looking it up in the current PATH

execv(char *path, char *argv[]) Like execl() but command-line arguments are in an array

execve(char *path, char *argv[], char *envp[]) Like execle() but command-line arguments are in an array

execvp(char *file, char *argv[]) Like execlp() but command-line arguments are in an array

fexecve(int fd, char *argv[], char *envp[]) Executes the program stored in the file descriptor fd

 The following programs runs ls, listing the contents of the
current directory:

pid_t child_pid = fork ();
if (child_pid < 0)
exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{
int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}

 Once you've forked or spawned a process, it will be scheduled to
run

 There are no guarantees about when a parent or a child will be
scheduled relative to each other

 It can be useful for a parent process to wait until its child processes
have terminated

 There are two functions for this:
 wait(int *stat_loc)
▪ Waits for all children

 waitpid(pid_t pid, int *stat_loc, int options)
▪ Waits only on child process with PID

 Here's the ls example from earlier, except that the parent process waits
for ls to finish

 More code isn't shown, but the parent could continue doing other things
pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{

int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}

wait (NULL); // waits for ls to finish

 Although physical memory is shared between processes, the
virtual memory system means that processes don't share
memory directly

 Other things must be shared by processes:
 Network cards
 Hard drives and SSDs
 User input and output devices

 A uniform way to work with most shared resources is to treat
them all like files

 This file abstraction makes many libraries similar and simpler

 The UNIX file abstraction uses two key ideas:
 A file is a sequence of bytes
 Everything is a file

 This abstraction is different from the traditional idea of files in a
few ways:
 Moving backwards and forwards within a file isn't always possible
 Files don't always have names or live in a particular place
 Files don't always have a set structure

 Even so, creating, deleting, opening, closing, reading, and writing
can be treated the same

 To open a file for reading or writing, use the open() function
 The open() function takes the file name, an int for mode,

and an (optional) mode_t for permissions
 The name refers to an entity somewhere in the directory

structure that might or might not be a normal file
 It returns a file descriptor as an int

int fd = open("input.dat", O_RDONLY);

 A number of constants specify whether the opening is for reading or writing
 The optional permissions value has other constants to set the permissions of the file when

creating a new one
 Both sets of constants can be bitwise ORed together to make complicated values

Access Meaning

O_RDONLY Open for reading only

O_WRONLY Open for writing only

O_RDWR Open for reading and writing

O_NONBLOCK Do not block on opening while waiting for data

O_CREAT Create the file if it does not exist, requires mode_t argument

O_TRUNC Truncate to size 0

O_EXCL Error if O_CREAT and the file exists

Name Description

S_IRUSR Read (user)

S_IWUSR Write (user)

S_IXUSR Execute (user)

S_IRGRP Read (group)

S_IWGRP Write (group)

S_IXGRP Execute (group)

S_IROTH Read (other)

S_IWOTH Write (other)

S_IXOTH Execute (other)

 The following example shows how to open a file
 For writing
 By creating it
 Truncating its size to 0 if there's already something in the file
 Making it readable and writable to the user and readable to others

 It's also common to use numbers in octal for permissions, where the 64's
place is permission for the user, the 8's place is permission for the group,
and the 1's place is permission for others
 S_IRUSR | S_IWUSR | S_IROTH = 110 000 100 = 0604

int fd = open("output.dat", O_CREAT | O_TRUNC |
O_WRONLY, S_IRUSR | S_IWUSR | S_IROTH);

 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open("input.dat", O_RDONLY);
int buffer[100];
// Fill with something
read(fd, buffer, sizeof(int)*100);

 To close a file descriptor, call the close() function
 Close files when you're done with them

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC,
0644);
// Write some stuff
close(fd);

 Linux provides some "special" files
 /dev/full

▪ A file that's says the device is full if you try to write to it, gives unlimited zeroes if you try to
read from it

 /dev/null
▪ A file you can write to forever but simple discards the data (while saying that the write

succeeded)
 /dev/random

▪ A file you can read a stream of random bytes from
 /dev/zero

▪ A file you can read an unlimited stream of zero bytes from
 They're not actually files, but you can treat them as if they are
 They can be useful for testing and sometimes even for the operation of

program

 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC, 0644);
int buffer[100];
int i = 0;
for (i = 0; i < 100; ++i)

buffer[i] = i + 1;
write(fd, buffer, sizeof(int)*100);

 It's possible to move the current location within the file using the lseek()
function

 Its arguments are
 The file descriptor
 The offset (positive or negative)
 Location to seek from:

▪ SEEK_SET (beginning of file)
▪ SEEK_CUR (current location)
▪ SEEK_END (end of file)

 Seeking is more common when reading, but you can seek while writing too

int fd = open("input.dat", O_RDONLY);
lseek(fd, 100, SEEK_SET);

 The following code finds out how big a file (stored with file
descriptor fd) is in bytes:

struct stat metadata;
fstat (fd, &metadata);
printf ("File size: %lld bytes\n",

(long long)metadata.st_size);

 The following shows some fields in struct stat
 The st_mode field is a bitwise OR of permissions and other

information from the table on the right
struct stat {
dev_t st_dev; // device of inode
ino_t st_ino; // inode number
mode_t st_mode; // protection mode
nlink_t st_nlink; // hard links to file
uid_t st_uid; // user ID of owner
gid_t st_gid; // group ID of owner
dev_t st_rdev; // device type
off_t st_size; // file size in bytes
// Other fields depending on OS ...

};

Name Description

S_IFIFO Named pipe (IPC)

S_IFCHR Character device (terminal)

S_IFDIR Directory file type

S_IFBLK Block device (disk drive)

S_IFREG Regular file type

S_IFLNK Symbolic link

S_IFSOCK Socket (IPC, networks)

 You can send signals to processes from the command line
 Ctrl-C: SIGINT (interrupt)
 Ctrl-Z: SIGTSTP (terminal stop, usually suspends)

 Signals often result in the process being killed
 Perhaps for that reason, the kill command is used to send

arbitrary signals (not just killing ones)
 Flag gives the kind of signal
 Then specify the PID of the process

> kill –KILL 8382

 When using the kill command, the flag can either be the name of
the signal (-KILL) or its number (-9)

 Here are some common signals:
Name Number Description

SIGINT 2 Interrupts the process, generally killing it. Sent with Ctrl-C.

SIGKILL 9 Kills the process. Cannot be ignored or overwritten.

SIGSEGV 11 Sent to a process when it has a segmentation fault.

SIGCHLD 18 Sent to a parent when a child process finishes. Used by wait().

SIGSTOP 23 Suspends the process. Cannot be ignored or overwritten.

SIGTSTP 24 Suspends the process. Sent with Ctrl-Z.

SIGCONT 25 Resumes a suspended process.

 Just as you can use the kill command from the command line, you
can also call the kill() function to send a signal to another
process

 The function takes two parameters:
 PID of the process to kill
 int value giving the signal, usually a named constant

 You can usually only kill processes that you own
 Unless you're a superuser (like root)

kill (pid, SIGSTOP); // Suspends process with pid

 Below, a parent forks a child
 The child goes into an infinite loop
 Then, the parent kills the child

pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork failed

if (child_pid == 0)
while (1) ; // child loops

sleep (1); // parent sleeps for 1 second
kill (child_pid, SIGKILL); // parent kills the child

 Although signals have default actions for processes, some signals can be
overridden

 A process can define what happens when, for example, it's interrupted
 First, you need a function that will get called when a particular signal

happens
 It must take an int (the signal) and return void

 Example that prints "I don't want to die!" and then exits

static void
handler(int signal)
{

write(STDOUT_FILENO, "I don't want to die!\n", 21);
exit(0);

}

 Once you've written the custom signal handler, you have to
override it with the sigaction() function:

 The action parameter is a struct sigaction with a
function pointer to the new handler

 The old parameter is NULL unless you want to find out what
the old signal handler was

int sigaction(int signal, const struct sigaction *action,
struct sigaction *old);

 The following code overrides the SIGINT signal with the handler from a couple
of slides back

 Then it goes into an infinite loop until someone interrupts it (like with Ctrl-C)
int
main (int argc, char *argv[])
{

struct sigaction sa; // Struct we'll add the handler to
memset(&sa, 0, sizeof(sa)); // Zero out the contents first
sa.sa_handler = handler;

// Override SIGINT handler
if (sigaction (SIGINT, &sa, NULL) == -1)

printf ("Failed to overwrite SIGINT.\n");

printf ("Entering loop\n");
while (1); // Loop until signal
return 0;

}

 It's sort of cool that we can make a handler print something special before
crashing the program

 But we can also do some code to handle the signal and then jump back to
a safe location
 Away from blocked I/O or an infinite loop
 Somewhere that's been marked and is still on the stack

 To do that, we need two functions

// Set jump location
int sigsetjmp(sigjmp_buf context, int mask);

// Jump to location
int siglongjmp(sigjmp_buf context, int value);

sigjmp_buf context;

static void handler(int signal)
{
write(STDOUT_FILENO, "I don't want to die!\n", 21);
siglongjmp (context, 1); // Jumps to marked location with value 1 (insane!)

}

int main (int argc, char *argv[])
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa)); sa.sa_handler = handler;

if (sigaction (SIGINT, &sa, NULL) == -1)
printf ("Failed to overwrite SIGINT.\n");

if (sigsetjmp (context, 0)) // Marks location and returns 0 the first time
printf ("Resuming execution\n");

printf ("Entering loop\n");
while (1); // Loop until signal
return 0;

}

 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer

 We typically want a pointer that points to a certain kind of
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;

 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int *pointer;
pointer = &value; // pointer has value's address

 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf("%d", *pointer); // prints 5
*pointer = 900; // value just changed!

 Java doesn't have pointers
 But it does have references
 Which are basically pointers that you can't do arithmetic on

 Like Java, pointers allow us to do aliasing
 Multiple names for the same thing

int wombat = 10;
int* pointer1;
int* pointer2;
pointer1 = &wombat;
pointer2 = pointer1;
*pointer1 = 7;
printf("%d %d %d", wombat, *pointer1, *pointer2);

 One of the most powerful (and most dangerous) qualities of
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from) a pointer, it jumps the
number of bytes in memory of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf("%d", *value); // What does it print?

 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // Exactly equivalent

value = &numbers; // What about this?

 Well, no, they aren't
 But you can still use array subscript notation ([]) to read and

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers;

printf("%d", value[3]); // prints 11
printf("%d", *(value + 3)); // prints 11
value[4] = 19; // changes 13 to 19

 What if you don't know what you're going to point at?
 You can use a void*, which is an address to…something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often

char s[] = "Hello World!";
void* address = s;
int* thingy = (int*)address; // Uh-oh
printf("%d\n", *thingy);

 In general, data is passed by value
 This means that a variable cannot be changed for the function

that calls it
 Usually, that's good, since we don't have to worry about

functions screwing up our data
 It's annoying if we need a function to return more than one

thing, though
 Passing a pointer is equivalent to passing the original data by

reference

 Let's imagine a function that can change the values of its
arguments

void swapIfOutOfOrder (int *a, int *b)
{
if (*a > *b)

{
int temp = *a;
*a = *b;
*b = temp;

}
}

 You have to pass the addresses (pointers) of the variables
directly

 With normal parameters, you can pass a variable or a literal
 However, you cannot pass a reference to a literal

int x = 5;
int y = 3;
swapIfOutOfOrder(&x, &y); // Will swap x and y

swapIfOutOfOrder(&5, &3); // Impossible

 Memory can be allocated dynamically using a function called
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes
you want

 It returns a pointer to that memory, which you cast to the
appropriate type

int* data = (int*)malloc(sizeof(int));

 It's common to allocate an array of values dynamically
 The syntax is exactly the same, but you multiply the size of

the type by the number of elements you want

int i = 0;
int *array = (int*)malloc (sizeof(int)*100);
for (i = 0; i < 100; ++i) // Initialize for fun
array[i] = i + 1;

 We can define a pointer to a struct variable
 We can point it at an existing struct
 We can dynamically allocate a struct to point it at

struct student bob;
struct student *studentPointer;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
studentPointer = &bob;
(*studentPointer).GPA = 2.8;
studentPointer = (struct student*)malloc(sizeof(struct
student));

 As we saw on the previous slide, we have to dereference a struct
pointer and then use the dot to access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be

written as an arrow (->)

struct student* studentPointer = (struct student*)
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;

 If you pass a struct directly to a function, you are passing it by
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and
so that its members can be changed

void flip (struct point *value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}

 One problem with malloc() is that the memory it allocates is filled with
garbage

 Like malloc(), calloc() allocates memory, but it also zeroes all of it
out

 Many programmers think it's safer to use calloc() in all situations
where you would use malloc()

 There's a slight syntax difference:
 calloc() takes two arguments: number of elements and size of each one

// malloc() version
int *array1 = (int*)malloc (sizeof(int)*100);
// equivalent calloc() version
int *array2 = (int*)calloc (100, sizeof(int));

 For a dynamic array, it can be useful to grow an existing chunk of memory if it's
too small

 You could allocate an entirely new, bigger chunk of memory, copy everything
from the old memory over, and then free the old memory
 This is what you have to do in Java

 C provides a slick function, realloc(), that does all of that for you
 Arguments: memory to resize, new size
 Return value: resized memory

if(size == capacity)
{
capacity *= 2;
array = realloc(array, capacity*sizeof(int));

}
array[size] = element;
++size;

 C isn't garbage collected like Java
 If you allocate something on the stack, it disappears when the function

returns
 If you allocate something on the heap, you have to deallocate it with
free()

 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char *things = (char*)malloc (100*sizeof(char));
// Do stuff with things
free(things);
things = NULL;

 Given that i has type int and p and q have type int*,
which of the following will cause a compiler error?

a)p = &i;
b)p = *&i;
c)p = &*i;
d)i = *&*p;
e)i = *&p;
f)i = &*p;

g)p = &*&i;
h)q = *&*p;
i)i = **&p;
j)q = *&p;
k)q = &*p;

 There are many IPC approaches, but they can all be
categorized as either message passing or shared memory

 Message passing:
 Sender prepares a message
 Sender makes a system call to request a data transfer
 Kernel copies the message into a buffer
 Receiver makes a system call to retrieve the data
 Receiver copes the message into its own memory

 Shared memory IPC is completely different
 The processes decide on a chunk of virtual memory that will

be used for IPC
 The processes make system calls to request that this memory

is shared
 Once it's shared, processes can read and write from shared

memory just like any other data in the program
 Mediation through the kernel isn't needed after the memory

is shared

 Message passing requires:
 A system call to read
 A system call to write
 Copying the message into kernel memory
 Copying the message into receiver memory

 Thus, sending lots of messages can cause a lot of overhead
 However, sending a small number of messages can be less

expensive than setting up shared memory
 Message passing naturally handles the problem of

synchronization
 Making sure that timing doesn’t corrupt memory

 It's computationally expensive to set up the shared memory
 But that's a one-time cost
 If two processes are sharing lots of messages, it can be more

efficient to use a shared memory system
 Perhaps the more significant problem with shared memory is

synchronization
 Processes reading and writing the same memory can leave the memory in

an inconsistent state
 If one process executes x += 100 while another executes x -= 100,

the result could be the correct x or the incorrect x + 100 or x – 100
 Tools must be used to guarantee synchronization

 Using the categories from the previous slide, we can list all of the IPC techniques that will
be covered in this class

 We talked about signals last week, which are a form of IPC but very limited
 We'll cover sockets when we talk about networking

Technique Model Purpose Granularity Network

Pipe/FIFO Message passing Data exchange Byte stream Local

Socket Message passing Data exchange Either Either

Message queue Message passing Data exchange Structured Local

shm() Shared memory Data exchange None Local

Memory-mapped file Shared memory Data exchange None Local

Signal Message passing Synchronization None Local

Semaphore Message passing Synchronization None Local

 Pipes are a way to do message passing between two
processes
 The bytes flow in one direction
 There's a different file descriptor for each end
 Think of it like a pipe where water is poured into one end and comes

out the other
 Internally, the shell uses pipes to communicate between two

programs when you use the | operator on the command line

sort foo.txt | grep -i error | head -n 10

 Pipes only go in one direction
 One end is the reading end, and the other is the writing end

 Pipes preserve order
 The bytes read come out in the same order they were written

 Pipes have limited capacity
 If a pipe is full, trying to write to the pipe will block until more is read

 Pipes are unstructured
 It's all just bytes, so the processes have to know what kind of data to

expect
 Messages smaller than PIPE_BUF are sent atomically
 Two processes writing messages to a pipe will not get their messages

garbled

 The pipe() function takes an int array of length 2 to hold file
descriptors corresponding to the ends of the pipe

 It's convention to use element 0 for reading and element 1 for
writing

 For piping between parent and child, the call to pipe() happens
before the fork(), so that both have clones of the same file
descriptors

 One process reads from the pipe and the other writes
 Each process closes the end that they're not using

int pipe (int pipefd[2]);

int pipefd[2];
char buffer[10];
memset (buffer, 0, sizeof (buffer));
int result = pipe (pipefd); // Open the pipe
assert (result >= 0);

pid_t child_pid = fork (); // Create child process
assert (child_pid >= 0);
if (child_pid == 0)
{
close (pipefd[1]); // Child closes writing end
ssize_t bytes_read = read (pipefd[0], buffer, 10); // Read from pipe
if (bytes_read <= 0)
exit (1);

printf ("Child received: '%s'\n", buffer);
exit (0);

}

close (pipefd[0]); // Parent closes the reading end
strncpy (buffer, "hello", sizeof (buffer));
printf ("Parent is sending '%s'\n", buffer);
write (pipefd[1], buffer, sizeof (buffer)); // Parent sends "hello"
wait (NULL); // Wait for child to terminate

 Let's go back to our command-line example:

 What's happening behind the scenes?
 The shell is calling fork() and exec() to run each of those processes
 Then, each process is linked to the next one with a pipe
 But how do those arbitrary processes know to read from or write to a pipe?
 They don't, so the shell magically changes stdout or stdin to pipe file

descriptors

sort foo.txt | grep -i error | head -n 10

sort grep head
redirected
stdout

redirected
stdin

redirected
stdout

redirected
stdin

 The dup2() function closes a new file descriptor and
replaces it with an old file descriptor

 This function is used by the shell to close their stdin or
stdout and replace it with an end of a pipe

 The syntax is confusing:
 We keep the first file descriptor
 We replace the second one

int dup2 (int oldfd, int newfd);

 Pipes are great for parent and child processes
 Create the pipes in the parent, use them in the children

 But what if two unrelated processes want to share a pipe?
 FIFOs or named pipes are pipes associated with a file name
 These files can be seen in the file system, but they're special

files intended only for use as pipes
 Naming:
 In Linux, it's common to put these files in the /tmp/ directory
 It's important to pick a file name that's unlikely to collide with other

FIFOs

 The mkfifo() function is used to create a FIFO

 The mode is a bitwise OR of the permissions you want the FIFO to
have (who can read and write)

 Using it creates the FIFO (which looks like a file), but programs still
have to open it to use it and close it when done

 After the FIFO is done being used, the unlink() function
removes the path from the file system

int mkfifo (const char *path, mode_t mode);

int unlink (const char *path);

 The following code creates a FIFO and reads int values until it gets a 0
const char *FIFO = "/tmp/MY_FIFO";
assert (mkfifo (FIFO, S_IRUSR | S_IWUSR) == 0);
int fifo = open (FIFO, O_RDONLY); // Open FIFO, delete if fails
if (fifo == -1)

{
fprintf (stderr, "Failed to open FIFO\n");
unlink (FIFO);
return 1;

}

bool done = false;
while (!done)
{
int value = 0;
if (read (fifo, &value, sizeof (int)) == sizeof (int)) {

if (value == 0)
done = true;

else
printf ("%d\n", value);

}
close (fifo);
unlink (FIFO);

 The following code opens the FIFO and writes 6 int values to it

const char *FIFO = "/tmp/MY_FIFO";

int fifo = open (FIFO, O_WRONLY);
assert (fifo != -1);

for (int index = 5; index >= 0; index--)
{
write (fifo, &index, sizeof (int));
sleep (1); // Sleep for a second before writing more

}

close (fifo);

 Having covered pipes and FIFOs, we'll jump to the other side of
the fence and talk about shared memory

 One shared memory technique are memory-mapped files
 A normal file is mapped into the virtual memory of a process
 Data can be read and written into that memory using normal

pointer operations
 And the data will magically get read and written to the file!

 One process can use memory-mapped files to interact with a file
without using read() or write() calls

 But two or more processes can use memory-mapped files to
exchange data directly

Kernel

Stack

Memory Map

Heap

Data

Code

 There's actually a special segment
we haven't talked about in virtual
memory before used just for
memory mapping
 Between the heap and the stack

 The virtual memory system is able
to read only needed parts of the
file into memory (often a page at a
time)

 Storing data into this memory is
eventually written back to the file

Disk

File
9eebba32
6a320e2d
d39a8f04
1db89c49
56b3a80a

 Over regular file access
 Multiple processes can have read-only access to a common file
▪ Often done with shared libraries, so that many different processes are able to access,

for example, the same code for printf()
 Programs can sometimes be simpler because there's no need to use
fseek() to jump around a file

 Reading files can be more efficient because the file contents don't have to
be copied into the kernel's buffer cache

 Compared to other kinds of IPC
 Writable memory-mapped files are fast for IPC
 Unlike message passing, data continues to exist and can be read

repeatedly

 The mmap() function returns memory mapped to a particular file descriptor

 addr is a suggestion for where the memory goes but should usually be NULL
 length is how many bytes to map
 prot are flags shown on the right that can be combined
 flags are MAP_SHARED or MAP_PRIVATE (and others), depending on whether

the area is shared
 fd is an open file descriptor for a file
 offset is the starting point inside the file

void *mmap (void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Protection Actions permitted
PROT_NONE May not be accessed
PROT_READ Region can be read
PROT_WRITE Region can be modified
PROT_EXEC Region can be executed

 The munmap() function unmaps an existing map

 addr is the start of the mapped address
 length is how much to unmap

 The msync() function synchronizes the file with the mapped memory

 MS_ASYNC flag returns immediately and MS_SYNCwaits for the sync to
complete

void munmap (void *addr, size_t length);

void msync (void *addr, size_t length, int flags);

 The following example checks to make sure that the 2nd, 3rd, and 4th bytes of an executable
are "ELF", a marker of the executable and linking format used by Linux

int fd = open ("/bin/bash", O_RDONLY);
assert (fd != -1);

struct stat file_info;
assert (fstat (fd, &file_info) != -1);

// Map whole file for reading, unshared
char *mapping = mmap (NULL, file_info.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
assert (mapping != MAP_FAILED);

// Bytes 1 - 3 of the file must be 'E', 'L', 'F'
if (mapping[1] == 'E' && mapping[2] == 'L' && mapping[3] == 'F')

printf("Valid executable!\n");
else

printf("Invalid executable!\n");

munmap (mapping, file_info.st_size); // Unmap file and close it
close (fd);

 Assignments and projects for this class frequently use command-
line options

 Dealing with them can be annoying, so POSIX provides
getopt() to help:

 argc and argv are the usual argument values passed into main()
 optstring is a string containing:
▪ Characters for any flag you want to give (such as g for a -g flag)
▪ With a colon afterwards when there are arguments (such as o: if there's an argument

for the -o flag)

int getopt(int argc, char * const argv[], const char *optstring);

 Typically, getopt() is called repeatedly
 Whenever a legal option is found, the char value associated with that

option is returned
▪ If the option has an argument, it's stored in the global variable optarg

 For unrecognized options, '?' is returned
 When all options have been processed
▪ getopt() returns -1
▪ The global variable optind contains the index of the first element in argv that isn't

an option or option argument
 getopt()moves around the contents of argv so that all the

options appear first

 Consider a program that runs the following code in its main()

 It's looking for:
 A -c option with no argument
 A -o option with an argument

int value = 0;
while ((value = getopt(argc, argv, "co:")) != -1)
{
switch (value)
{

case 'c': printf ("Compile but do not link\n"); break;
case 'o': printf ("Output: %s\n", optarg); break;

}
}
printf ("Current argument: %s\n", argv[optind]);

 Now this executable (program) is run:

 The output will be:

 Likewise, argv will have been rearranged so that all options are first:

./program goats.c -o result –c

Output: result
Compile but do not link
Current argument: goats.c

argv ./program -o result -c goats.c NULL

0 1 2 3 4 5

 POSIX IPC function refer to IPC object named with a string that follows a
particular format:
 It must start with a slash
 It must have one or more non-slash characters
 Example: /comp3400_mqueue

 Object names must be unique
 These objects often appear as files in the file system, but you shouldn't

interact with them using normal file commands
 POSIX IPC connections also have two other (familiar) values:
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY,
O_RDWR, O_CREAT, and O_EXCL

 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP

 Message queues are a form of message-passing IPC
 But don't we already have pipes and FIFOs?
 Differences from pipes:
 Messages are sent as units: one whole message is retrieved at a time
 Message queues use identifiers, not file descriptors, requiring special functions

instead of read() and write()
 Messages have priorities, not just first-in-first-out
 Messages exist in the kernel, so killing off the sending process won't destroy

them
 The big difference is structure:
 Pipes and FIFOs send bytes, and the reader can read any number of available

bytes at a time
 Message queues send messages as units

 mqd_t mq_open (const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *attr */);

 Open (and possibly create) a POSIX message queue.
 int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
 Get the attributes associated with a given message queue

 int mq_close (mqd_t mqdes);
 Close a message queue

 int mq_unlink (const char *name);
 Remove a message queue's name (and the message queue itself, when all processes close it)

 int mq_send (mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned int msg_prio);

 Send a message with a given length and priority
 ssize_t mq_receive (mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);
 Receive a message into a buffer and get its priority

 The following code creates a message queue and sends "WOMBAT"

 Priority increases as the number increases
 Priorities start at 0 and go up to at least 31, but some systems go as high as 32768
 Read documentation to find out how many priority levels there are

mqd_t mqd = mq_open ("/comp3400_mq", O_CREAT | O_EXCL | O_WRONLY, 0600,
NULL); // mq_open() requires four arguments when creating

if (mqd == -1) // Check for error
{

perror ("mq_open failed");
exit (1);

}

mq_send (mqd, "WOMBAT", 7, 10); // Send WOMBAT (7 chars) with priority 10
mq_close (mqd);

 With pipes and FIFOs, it's common to create a fixed-size
buffer and then read into it, usually only filling part of it

 With message queues, you have to read exactly the size of a
message that's waiting for you
 If not, the read will fail

 Two strategies:
 Use a system where the sizes of messages are always the same
 Use the mq_getattr() function to get the attributes of a message

waiting in the message queue and create a buffer exactly the right
size to read it

 The following code reads the "WOMBAT"message sent by the other code
 It uses mq_getattr() to find out how big of a buffer it needs

mqd_t mqd = mq_open ("/comp3400_mq", O_RDONLY); // Only two arguments to open
assert (mqd != -1);

struct mq_attr attr;
assert (mq_getattr (mqd, &attr) != -1); // Get attributes

char *buffer = calloc (attr.mq_msgsize, 1); // Allocate buffer with size
assert (buffer != NULL);

unsigned int priority = 0;
if ((mq_receive (mqd, buffer, attr.mq_msgsize, &priority)) == -1) // Get message
printf ("Failed to receive message\n");

else
printf ("Received [priority %u]: '%s'\n", priority, buffer);

free (buffer);
buffer = NULL;
mq_close (mqd);

 Shared memory is pretty much the same as using memory-
mapped files
 Except that there's no file associated with the share
 So there's no persistent record of the memory

 To share memory, create a shared memory object (like a file,
but isn't) with shm_open()

 The size of this object is often resized with ftruncate()
 Then, this shared memory object is mapped with mmap(),

as was done with memory mapped files
 To delete the shared memory object, use shm_unlink()

 The shared memory
mapping means that a
region of memory in one
process exactly corresponds
to memory in another region
of memory in another
process

 It's unlikely that the mapped
memory will be in the same
location in virtual memory
for the two processes

Stack

Memory Map

15fe39b2
756f1a80
7b4e621c
34a65aeb

Stack

Memory Map

15fe39b2
756f1a80
7b4e621c
34a65aeb

Process 1 Process 2

 name gives the name of the object
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, O_RDWR, O_CREAT,

and O_EXCL
 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP

 name is the object to delete

 fd is a descriptor for the object or file to resize
 length the is the new size

int shm_open (const char *name, int oflag, mode_t mode);

int shm_unlink (const char *name);

int ftruncate (int fd, off_t length);

 First, let's imagine a struct declaration for structs that contain
permission information

struct permission
{

int user;
int group;
int other;

};

 A parent process:
 Creates a memory-mapped object
 Stretches it to be exactly the right size
 Maps some memory to this object

int shmfd = shm_open ("/comp3400_shm", O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR);

assert (shmfd != -1);

// Resize to hold one struct
assert (ftruncate (shmfd, sizeof (struct permission)) != -1);

// Map the object into memory
struct permission *perm = mmap (NULL, sizeof (struct permission),

PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);
assert (perm != MAP_FAILED);

 Fork the process
 Then, the child process:
 Sets values in the struct
 Unmaps the memory
 Closes the object

pid_t child_pid = fork();
if (child_pid == 0)

{
perm->user = 6;
perm->group = 4;
perm->other = 0;

// Unmap and close the child's shared memory
munmap (perm, sizeof (struct permission));
close (shmfd);
exit(0);

}

 Finally, the parent process:
 Waits for the child to finish
 Outputs the data stored by the child
 Unmaps the memory and closes the object
 Deletes the object

wait (NULL); // Wait for the child to finish

// Read from mapped memory
printf ("Permission bit-mask: 0%d%d%d\n",

perm->user, perm->group, perm->other);

munmap (perm, sizeof (struct permission)); // Unmap
close (shmfd); // Close object
shm_unlink ("/comp3400_shm"); // Delete object

 Both of the kinds of shared-memory IPC we've talked about often
need synchronization

 Synchronization means controlling when reads and writes
happen to avoid getting meaningless results

 In the previous example, a parent process waited for the child
process to finish writing (and die) before reading

 In general, doing so is undesirable:
 Many communicating processes do not have a parent/child relationship
 Waiting for a process to die means that there can't be back-and-forth

communication

 Semaphores are a simple kind of synchronization
 Internally, they have a counter
 If a process calls wait on a semaphore and the semaphore's value

is 0 or lower, the process will get blocked
 When another process calls post and the counter goes up, a

blocked process will resume (decrementing the counter back to 0
first)

 Many processes can be waiting on a single semaphore, but only
one will resume per call to post

 Waiting on a semaphore is also called decrementing, downing, or
P

 Posting on a semaphore is also called incrementing, upping, or V

 Processes A and B have access to shared memory
 A is writing data, and B wants to read after the writing is done
 A and B also have access to a semaphore initialized to 0
 A increments the semaphore after it finishes writing
 B decrements the semaphore before reading
 Everything works out:
 If B decrements the semaphore before A increments, B will block

until A is done
 If A increments the semaphore before B tries to decrement it, the

semaphore will already be 1, so B will decrement it but not block

 Return (and possibly create) a named semaphore, using the usual oflag and mode flags
 value determines the initial value of the semaphore (often 0)

 Block if the semaphore's value is 0, decrement after continuing

 Increment the semaphore's value, unblocking a process if the value is 0

 Close a semaphore

 Delete a semaphore

sem_t *sem_open (const char *name, int oflag,
/* mode_t mode, unsigned int value */);

int sem_wait (sem_t *sem);

int sem_post (sem_t *sem);

int sem_close (sem_t *sem);

int sem_unlink (const char *name);

 Exam 1!

 Work on Assignment 3
 Due Monday by midnight!

 Review book sections up to 3.8
 Exam 1 on Monday!

	COMP 3400
	Last time
	Questions?
	Assignment 3
	Semaphores
	Trying or waiting
	Unnamed semaphores
	Unnamed semaphore issues
	Review
	Exam format
	Linux/UNIX commands you should know
	Fixed-Width Types
	Fixed width types
	What about printing those things?
	Using the print macros
	System Architectures
	Tradeoffs
	System architectures
	Client/server architectures
	Client/server advantages and disadvantages
	Peer-to-peer (P2P) architectures
	Layered architectures
	Pipe-and-filter architectures
	Event-driven architectures
	Hybrid architectures
	State Machines
	UML state models
	State machines as recognizers
	Implementing state machines
	Example transition table
	Example table in code
	Effects
	Sequence models
	Processes
	Processes
	Virtual memory
	Why is it virtual memory?
	Operating systems
	Multiprogramming
	Problems with naïve batch processing
	Multiprogramming
	Types of multiprogramming
	Context switches
	Kernel
	Kernel
	x86 operating mode
	Booting
	Kernel invocation
	System Calls
	System calls
	How system calls work
	Common system calls
	Process Life Cycle
	Creating processes in code
	Using fork()
	Fork bombing
	Running another program
	Example with exec()
	Waiting for a child to finish
	Example with wait()
	Files
	Sharing resources
	UNIX file abstraction
	Opening files
	Constants
	Example with other constants
	Reading from files
	Closing files
	Special files
	Writing to files
	Seeking to locations
	Example getting file metadata
	Interpreting metadata
	Events and Signals
	Command line signals
	Common signals
	Sending signals in a program
	Example of kill() function
	Custom signal handlers
	Overriding the signal handler
	Overriding example
	Reborn like a phoenix
	Full example
	Pointers
	Pointers
	Declaration of a pointer
	Reference operator
	Dereference operator
	Aliasing
	Pointer arithmetic
	Arrays are pointers too
	Surprisingly, pointers are arrays too
	void pointers
	Functions that can change arguments
	Example
	How do you call such a function?
	malloc()
	Allocating arrays
	Pointers to structs
	Arrow notation
	Passing structs to functions
	calloc()
	realloc()
	free()
	Pointer practice
	Interprocess Communication
	Message passing
	Shared memory
	Pros and cons of message passing
	Pros and cons of shared memory
	IPC taxonomy
	Pipes
	Pipes
	Pipe details
	Pipe mechanics
	Pipe example
	Pipes and shell commands
	dup2()
	FIFOs
	FIFOs
	The mkfifo() function
	FIFO example reader
	FIFO example writer
	Memory-Mapped Files
	Memory-mapped files
	Visualization
	Advantages
	Mechanics
	Other useful functions
	Example
	The getopt() function
	Use of getopt()
	getopt() example
	getopt() example continued
	POSIX IPC
	POSIX IPC
	Message queues
	POSIX message queue functions
	Message queue sending example
	Warning!
	Message queue receiving example
	Shared Memory
	Shared memory
	Visualization
	Functions
	Example of memory mapping
	Example of memory mapping continued
	Example of memory mapping continued
	Example of memory mapping finished
	Semaphores
	Synchronization
	Semaphores
	Example
	Semaphore functions
	Upcoming
	Next time…
	Reminders

